Linear discriminant analysis as EEG features reduction technique for brain-computer interfaces
نویسندگان
چکیده
BCI systems analyze the EEG signal and translate patient intentions into simple commands. Signal processing methods are very important in such systems. Signal processing covers: preprocessing, feature extraction, feature selection and classification. In the article authors present the results of implementing linear discriminant analysis as a feature reduction technique for BCI systems. Streszczenie: Systemy BCI analizują sygnał EEG i tłumaczą intencje użytkownika na proste polecenia. Ważnym elementem systemów BCI jest przetwarzanie sygnału. Obejmuje ono: przetwarzanie wstępne, ekstrakcję cech, selekcję cech i klasyfikację. W artykule autorzy prezentują wyniki badań z zastosowaniem liniowej analizy dyskryminacyjnej jako narzędzia do redukcji cech. (Liniowa analiza dyskryminacyjna jako narzędzie redukcji cech sygnału EEG)
منابع مشابه
A review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملApplying Genetic Algorithm to EEG Signals for Feature Reduction in Mental Task Classification
Brain-Computer interface systems are a new mode of communication which provides a new path between brain and its surrounding by processing EEG signals measured in different mental states. Therefore, choosing suitable features is demanded for a good BCI communication. In this regard, one of the points to be considered is feature vector dimensionality. We present a method of feature reduction us...
متن کاملNoise Reduction in Brainwaves by Using Both EEG Signals and Frontal Viewing Camera Images
Electroencephalogram (EEG)-based brain-computer interfaces (BCIs) have been used in various applications, including human-computer interfaces, diagnosis of brain diseases, and measurement of cognitive status. However, EEG signals can be contaminated with noise caused by user's head movements. Therefore, we propose a new method that combines an EEG acquisition device and a frontal viewing camera...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کامل